Journal of Organometallic Chemistry, 311 (1986) C44-C46 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

REACTION OF DIAZONIUM SALTS WITH TRANSITION METALS

XII *. PALLADIUM-CATALYZED ARYLDESTANNYLATION OF α -STYRYLSTANNANES BY ARENEDIAZONIUM SALTS

KIYOSHI KIKUKAWA*, HIDETO UMEKAWA, and TSUTOMU MATSUDA

Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812 (Japan)

(Received June 20th, 1986)

Summary

Under palladium(0) catalysis, $Ph(R_3Sn)C=CH_2$ (R = Me, Et and Bu) easily reacted with ArN_2BF_4 (Ar = XPh, X = H, 4-Me, 4-I, 4-MeCO, 4-EtOCO, 3-NO₂ and 4-NO₂) and selectively produced (Z)-PhCH=CHAr but not Ph(Ar)C=CH₂. An addition-elimination mechanism instead of the transmetallation from tin to palladium is postulated for this unusual regiochemistry.

Organostannanes have been conveniently utilized in the palladium-catalyzed cross-coupling with organic halides [1–4]. Arenediazonium salts (ArN_2X) can be also alkylated by organostannanes under palladium catalysis [5]. These synthetically useful transformations of organostannanes including alkenylstannanes rely on the transmetallation from tin to palladium as a key step. In the course of our research on the palladium-catalyzed reaction of ArN_2X , we found an interesting aryldestannylation of α -styrylstannanes.

In the presence of catalytic bis(dibenzylideneacetone)palladium(0) $(Pd(dba)_2)$, tributyl- β -styrylstannanes $(E/Z \ 62/38)$ easily reacted with PhN_2BF_4 at room temperature to give stilbene $(E/Z \ 63/37)$ with retention of its geometry as expected by the transmetallation step [1,2]. Unexpectedly the reactions of trialkyl- α -styrylstannanes (1-3) with ArN_2BF_4 (4) did not give α -arylated styrenes but selectively produced (Z)-stilbenes ((Z)-5) (eq. 1, Table 1).

0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A.

^{*} For part XI see ref. 8.

Ph
C = CH₂ + ArN₂BF₄
$$\xrightarrow{Pd (dba)_2, r.t.}$$

R₃Sn
(4a - 4g)
(1, R = Me;
2, R = Et;
3, R = Bu).
(a; Ar = Ph, b; Ar = 4-MePh, c; Ar = 4-IPh,
d; Ar = 4-MeCOPh, e; Ar = 4-EtOCOPh,
f; Ar = 3-NO₂Ph, g; Ar = 4-NO₂Ph)

The bulky substituents on tin give better selectivity. Since the use of excess 4 caused considerable isomerization of (Z)-5, a 5–10% excess of 1–3 to 4 should be used to obtain (Z)-5. In the absence of 1–3, (Z)-5a is easily isomerized to (E)-5a under the present reaction conditions. Since the isomerization does not proceed in the absence of the palladium catalyst, the H-Pd species ([H-Pd]⁺ BF₄⁻) may play a crucial role. Alkenylstannanes react with H-Pd species to regenerate Pd⁰ (eq. 2, see also Scheme 1) [6].

 $[H-Pd]^+ BF_4^- + Ph(R_3Sn)C = CH_2 \rightarrow [Ph(R_3Sn)CHCH_2Pd]^+ \rightarrow$

$$PhCH=CH_2 + Pd^0 + R_3SnBF_4 \qquad (2)$$

TABLE 1

PALLADIUM-CATALYZED ARYLDESTANNYLATION OF $Ph(R_3Sn)C=CH_2$ (1-3) BY ArN₂BF₄ (4) (eq. 1) ^{*a*}

1-3	4	Pd(dba) ₂ (mol %)	Time (min)	Yields ^b (%)	Products (%, ratio) ^c	
					(E)- 5	(Z)-5
1		10	d	97	40	60
2	4 a	10	_ d	95	18	82
3	4 a	10	d	95	17	83
3	4 a	5	20	90	18	82
3°	4a	4	20	(98) ^e	65	35
3	4b	5	15	97	7	.93
3	4 c	5	120	86	8	92
3	4 d	5	60	80(60) [/]	17	83
3	4 e	5	60	97(70) ^f	7	93
3	4f	5	120	54	8	92
3	∖4g	5	60	60(42) [/]	16	84

^{*a*} The reactions were carried out with 2 mmol of 4, 2.2 mmol of 1-3 and Pd(dba)₂ in a mixed solvent of CH₃CN (12 ml) and Et₂O (8 ml) at room temperature under nitrogen, and were stopped by addition of 0.5 ml of Et₃N after gas evolution ceased. ^{*b*} Isolated yields based on 4. ^{*c*} Determined by GLC. ^{*d*} Gas evolution ceased within 10 min, but the mixture was stirred for 1 h. ^{*c*} Two mmol of 4a and 1.7 mmol of 3 were used, and the yield was based on 3. ^{*f*} Isolated yields of (*Z*)-5.

 $ArN_2BF_4 + Pd^{(O)} (dba)_2 \longrightarrow [Ar-Pd]^+ BF_4^+ + N_2$

SCHEME 1.

The present, high, but unexpected regioselectivity can be explained by an addition-elimination mechanism, which has been proposed for the palladium catalyzed arylation of alkenylsilanes [7,8], as shown in Scheme 1.

The reaction of zero-valent palladium with 4 easily generates the arylpalladium species (Ar-Pd) [5,9]. Steric and electronic effects of Ph and R₃Sn on 1-3 determine the regiochemistry of the addition of Ar-Pd to 1-3. The relative bulkiness of Ph and R₃Sn (R₃Sn > Ph) responds to the stability of the adducts, and hence to the selective formation of (Z)-5.

Since (Z)-5 can be easily separated from (E)-5 by column chromatography (silica gel $CCl_4/CHCl_3$), the present reaction provides a convenient procedure for the preparation of (Z)-stilbenes bearing a wide variety of substituents including halogens, ester, ketone and nitro groups.

References

- 1 F.K. Sheffy, J.P. Godschlax, and J.K. Stille, J. Am. Chem. Soc., 106 (1984) 4833, and ref. cited therein.
- 2 G.R. Crisp, W.J. Scott, and J.K. Stille, J. Am. Chem. Soc., 106 (1984) 7500.
- 3 M. Kosugi, Y. Shimizu, and T. Migita, Chem. Lett., (1977) 1423.
- 4 M. Tanaka, Tetrahedron Lett., (1979) 2601.
- 5 K. Kikukawa, K. Kono, F. Wada, and T. Matsuda, J. Org. Chem., 48 (1983) 1333.
- 6 Styrene generated by the reaction described in eq. 2 can be arylated by 4 under palladium catalysis. However, the arylation yields exclusively (E)-5 [10].
- 7 K. Kikukawa, K. Ikenaga, F. Wada, and T. Matsuda, Chem. Lett., (1983) 1337.
- 8 K. Ikenaga, K. Kikukawa, and T. Matsuda, J. Chem. Soc. Perkin Trans. I, (1986) in press.
- 9 R. Yamashita, K. Kikukawa, F. Wada, and T. Matsuda, J. Organomet. Chem., 201 (1980) 463.
- 10 K. Kikukawa, K. Nagira, F. Wada, and T. Matsuda, Tetrahedron, 37 (1981) 31.